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INTRODUCTION 

This paper describes the mathematical modeling 
and initial testing of an oil-hydrostatic bearing that 
derives compensation from both a central radial 
slit where fluid enters and stepped clearances 
near each end. Bearings using either a radial slit 
or stepped clearances for compensation were well 
studied over forty years ago by Donaldson [1]. 
These bearings have smooth bores uninterrupted 
with multiple recesses around the circumference. 
The present slit-step bearing achieves the best of 
both types with somewhat higher hydrostatic 
stiffness than the slit bearing and fluid shear drag 
lower than the step bearing. This is apparent in 
TABLE 1, which compares calculated values of 
initial (i.e., centered) hydrostatic stiffness for each 
type. The slit-step bearing is one of several types 
being studied at Lawrence Livermore National 
Laboratory for possible use on the Precision 
Optical Grinder and Lathe (POGAL). 

TABLE 1. Hydrostatic stiffness (normalized to 
pressure, projected area and inverse clearance) for 
three types of compensation, all with length-to-diameter 
ratio ½. 

Type of  
compensation 

Clearance 
ratio 

Hydrostatic 
stiffness 

Radial slit - 0.55 
Stepped 

clearance 2 0.28 

Slit plus step 3 0.73 
 

A general understanding of the different 
compensation schemes may be obtained by 
studying FIGURES 1-3. Each one shows a cross 
section through the upper half of the bearing with 
exaggerated clearances. The pressure profile 
along the length of the bearing is shown at 
nominal clearance (solid) and either side of 
nominal (dashed). The supply pressure is constant 

and the bearing film pressure decreases to zero 
(atmospheric pressure) at each end. The bearing 
exhibits positive stiffness when the film pressure 
integrated over the bearing area increases as the 
clearance decreases. 

 
FIGURE 1. Cross section of the radial-slit bearing with 
the pressure profile superimposed.  

 
FIGURE 2. Cross section of the stepped-clearance 
bearing with the pressure profile superimposed. 
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FIGURE 3. Cross section of the slit-step bearing with 
the pressure profile superimposed. Its has three 
regions: (a) land, (b) recess and (c) slit. 

The stiffness advantage of the slit-step bearing 
results from the recess distributing the pressure 
response from the slit over most of the bearing 
length. However, the recess cannot be too deep.  
Fluid flows circumferentially from the higher-
pressure side to the lower-pressure side more 
significantly for a larger recess-to-land clearance 
ratio and a larger length-to-diameter ratio, 
resulting in lower stiffness. These are important 
parameters when optimizing the bearing for high 
stiffness and low heat generation.  

ANALYTICAL MODEL 

The approach Donaldson used to model radial-slit 
and stepped-clearance bearings in [1] extends 
readily to the slit-step bearing of interest here. It 
involves piecing together solutions for partial 
differential equations in each region by matching 
flow and pressure at each junction.  

The model starts with the dimensionless Reynolds 
equation, given in (1) for hydrostatic (HS), 
hydrodynamic (HD) and squeeze-film (SF) modes 
of operation. Being linear in pressure, the 
complete solution may be superimposed from 
separate solutions found for each mode as in (2). 
Our nomenclature is consistent with that in [1] 
except for minor changes in notation. TABLE 2 
lists those variables with simple normalizations.  
The dimensionless parameter groups Γ and Ω 
appearing in (2) relate characteristic HD and SF 
pressures to the HS supply pressure. To further 
clarify, the subscripts in (2) are implied in (1) 
corresponding to the right-hand side, since 

superscripts and subscripts are needed later to 
identify the order and region associated with P. 
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TABLE 2. Nomenclature 

Symbol Variable Normalized to: 
P Pressure Supply pressure 
θ Angle (radians) - 
ρ Radial position Bearing radius 
w Axial position Bearing radius 
β Bearing length Bearing radius 
Η Film thickness Land clearance 
G Recess clearance Land clearance 
γ Slit gap Land clearance 
ε Eccentricity Land clearance 

 

Reynolds equation is accurate under the following 
conditions: incompressible, Newtonian fluid with 
constant viscosity, viscous-dominated flow, and 
very small clearances compared to the other 
length scales. In addition, the bearing surfaces are 
assumed to be perfectly aligned and free from 
deformations and form errors.  

To facilitate solutions for (1), the pressure 
distribution is represented in (3) as a perturbation 
expansion in eccentricity ε. Terms up to first order 
are sufficient for HS and HD equations, while zero-
order terms are sufficient for SF equations. This 
small-ε approximation will have error of order ε 2.  

 ( ) ( ) ( )10, PPwP ⋅+= εθ  (3) 

The film thickness H is constant in w for each 
region and has θ dependence as described in (4) 
for the land and recess regions, respectively. 
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Substituting (3) and (4) into (1) yields a mix of 
zero-, first- and higher-order terms in ε. The 
higher-order terms of course are discarded and 
like terms are collected into separate equations, 
(5) and (6), each of which must be satisfied. 
Written for the recess region, these equations also 
apply to the land region by setting G = 1.  
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The slit region has uniform and constant gap so 
the polar-coordinate form of the Laplace equation 
(7) holds for both zero- and first-order pressure 
terms. 

 0
2

2
=

∂

∂
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

θρ
ρ

ρ
PP  (7) 

It is worth making some observations at this point 
to save work downstream. In the centered position 
(ε = 0), the hydrostatic pressure distribution lacks θ 
dependence in any of the three regions. The 
pressure distribution that solves the HS term in (5) 
is linear along the axis, as pictured in FIGURE 3. 
In the slit, a logarithmic pressure distribution 
solves (7) for the centered position.  

A centered hydrodynamic bearing does not 
generate pressure so only the first-order HD 
pressure is nonzero. As noted earlier, only the 
zero-order SF pressure is needed for small 
eccentricity. Upon examining the HD term in (6) 
and the SF term in (5), they differ only in the 
forcing function on the right side, cosθ vs. –sinθ. In 
both cases, the pressure distribution is generated 
by lateral velocity, so we should expect both 
solutions to be identical except for a 90º phase 
difference in θ. Thus only one solution need be 
carried further, and there is some utility in 
addressing the terms in (6), i.e., HS and HD. 

Returning to the zero-order hydrostatic pressure, 
the two junction pressures along with known 
boundary pressures completely determine the 
distribution. We could choose to specify them as 
design parameters or calculate them from 
specified physical parameters. Since both slit and 
step bearings have only one junction, it is typical 
to specify the junction pressure at 0.5, the optimal 
value. The slit-step bearing does not have a tidy 
optimum so our preference is to calculate the 
junction pressures from physical parameters. 
Matching flow rates across two junctions gives two 
equations in (8) to solve for the two unknown 
junction pressures in (9).  
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Now the boundary conditions can be determined 
for the first-order pressure distributions. The three 
regions require a total of six equations and most 
are functions of θ. Two are externally imposed 
pressures, and the remaining four come from 
pressure and flow matching at the two junctions. 
Without further explanation, they appear in (10) 
through (15). 
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The general solution to (6) and the applicable 
boundary equations is given in (16), where Ai, Bi 
and Ci are constants to be determined for regions 
(a) and (b). Likewise, the general solution to (7) for 
region (c) is given in (17).  
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Next the solutions are substituted into the 
differential equations and boundary equations to 
determine the constants. Several constants are 
easily found and the remaining four are 
represented in a matrix equation (18) to facilitate 
their simultaneous solution and to easily compute 
the HS and HD stiffness in (19). Being 
nondimensional with the same normalization used 
in [1], it is satisfying to find numerical agreement 
with the two limiting cases that can be cross 
checked, i.e., radial-slit and stepped-clearance 
bearings. 
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Turning (19) into a dimensional form requires: the 
supply pressure ps, the land clearance ca, the 
bearing length L and diameter D, and the 
dimensionless parameter groups Γ and Ω from (2). 
Both Γ and Ω include the fluid viscosity μ and a 
characteristic velocity, which can be chosen to 
yield a common expression. For the HD stiffness, 
it is the bulk circulation frequency of the fluid at 
one-half the shaft speed. For the SF stiffness, it is 
the excitation frequency. It is convenient to 
express the bearing stiffness (20) as a complex 
number, with the real HS stiffness and the 
imaginary stiffness that is 90º out of phase either 
in space (HD) or in time (SF).  
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TEST SPINDLE 

A test spindle was built with less than $500 capital 
investment in materials, in particular, ground-and-
polished steel stock for the rotor and SAE 660 
bronze bar for the journals. Other materials were 
found on site, and a variable-speed router motor 
provides an inexpensive drive solution. The 
authors constructed the test spindle on site. The 
journals and housing were turned on a Hardinge 
tool-room lathe and aligned concentric to one 
another on a Moore No. # 3 Measuring Machine. 

INITIAL TEST RESULTS 

The static compliance of the spindle was 
measured midway between the bearings by 
applying a force to the shaft with a force gauge 
and measuring the displacement of the shaft with 
respect to the housing using a capacitance gauge. 
The shear plus bending compliance of the shaft is 
reliably calculated to be 2.1 nm/N. Subtracting this 
from the total measured compliance and ignoring 
the compliance in the housing, the compliance for 
each bearing is 16 nm/N, or in terms of stiffness, 
61 N/μm. The calculated stiffness using the 
nominal design parameters and the supply 
pressure of the test, 1.3 MPa, is somewhat larger 
at 77 N/μm. This discrepancy could result from a 
number of sources but we suspect larger-than-
intended clearance.  

 

 
FIGURE 4. Two views of the test spindle. 
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